Retrieval-Augmented Generation

Retrieval-Augmented Generation is a technique using prior data and/or content, ingesting that data into a specialized Database, most likely a Vector Databases or a Multi Modal Databases, and then feeding it into an AI Model, such as an LLM. RAG promises to solve for the issue that most people and organizations are trying to work with AI in a way that is specific.
Building Production-Ready RAG Applications: Jerry Liu
The BEST Way to Chunk Text for RAG
https://youtu.be/T-D1OfcDW1M?si=p-hYEfvkLU81j3xd
https://youtu.be/PLuSfAkOHOA?si=cK2wvPdSuJWvutDg
https://www.youtube.com/live/rL1wlYIyJho?si=ULpPcD2SQNIyR3RQ
https://youtu.be/YAiEM59mpZc?si=-THqYA-MLlte5u6B
https://youtu.be/v5c5FV9cLAw?si=mHWaQ1qyDHkNztUJ
https://youtube.com/shorts/xS55duPS-Pw?si=Vtlbl1tahjY-lKal
2025, February 2. [You HAVE to Try Agentic RAG with DeepSeek R1 (Insane Results)](https://youtu.be/uWDocIoiaXE?si=hACxzxH4qNI6Ez6z). Cole Medin. [[Deepseek]]