Salute: An AI design system generator that generates as you code.
AI-Powered Design System Generator Specification
Executive Summary
This specification outlines the architecture and implementation of an innovative AI-powered design system generator that bridges the gap between design and engineering workflows. The system's primary focus is enabling engineers to generate comprehensive design system documentation as they build, creating a truly unified design-to-code workflow delivered through Model Context Protocol (MCP) servers.
[emkvx2]
[chi5g7]

Vision & Goals
Primary Objectives
Key Differentiators
- Documentation generation happens during development, not after
- Engineers become active contributors to design system documentation
Component Display Component Specification
Overview
A reusable component for displaying and documenting UI components in a design system. This component provides a clean, interactive way to showcase components with code examples, variants, and usage guidelines.
Features
1. Component Preview
- Displays the rendered component in an isolated container
- Responsive preview area with viewport size controls
- Toggle between light/dark mode
- Background color customization
- Toggle component states/interactions
2. Code Display
- Syntax-highlighted code examples
- Toggle between different frameworks (React, Vue, Svelte, etc.)
- Copy to clipboard functionality
- Expandable/collapsible code blocks
3. Component Controls
- Interactive prop controls (sliders, toggles, selects)
- Live preview updates as props change
- Preset configurations
- Reset to defaults option
4. Documentation
- Component name and description
- Status badges (New, Deprecated, Experimental)
- Version information
- Last updated timestamp
- Dependencies
Props
| Prop | Type | Default | Description |
title | string | '' | The name of the component |
description | string | '' | Brief description of the component |
component | React/Vue/Svelte Component | - | The actual component to display |
variants | Array<{name: string, props: object}> | [] | Different variants of the component |
code | string | '' | Example code for the component |
status | 'stable' | 'beta' | 'deprecated' | 'stable' | Component status |
version | string | '1.0.0' | Component version |
dependencies | string[] | [] | List of dependencies |
Usage Example
jsx
<ComponentDisplay
title="Button"
description="A simple button component with multiple variants and sizes."
component={Button}
variants={[
{ name: 'Primary', props: { variant: 'primary', children: 'Click Me' } },
{ name: 'Secondary', props: { variant: 'secondary', children: 'Click Me' } },
]}
code={`<Button variant="primary">Click Me</Button>`}
status="stable"
version="1.2.0"
dependencies={['@your-design-system/core']}
/> Accessibility
- Keyboard navigation support
- Screen reader friendly
- Proper ARIA attributes
- Focus management
Responsive Behavior
- Adapts to different screen sizes
- Mobile-friendly controls
- Horizontal scrolling for wide components
- Toggleable device frames
Theme Support
- Light/dark mode
- Custom theming
- Contrast ratio checking
- Color blindness simulation
Development Guidelines
- Use TypeScript for type safety
- Follow WCAG 2.1 AA standards
- Document all props and methods
- Include unit tests
- Add storybook stories
- Support SSR/SSG
Future Enhancements
- Interactive playground
- Visual regression testing
- Performance metrics
- Bundle size analysis
- Automated screenshot testing
System Architecture
Core Components
1. MCP Server Architecture
text
┌─────────────────────────────────────────────────┐
│ MCP Host │
│ (IDE/Development Environment) │
├─────────────────────────────────────────────────┤
│ MCP Client 1 │ MCP Client 2 │ MCP Client 3│
└──────┬───────────┴──────┬──────────┴─────┬──────┘
│ │ │
▼ ▼ ▼
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│Design System │ │Documentation │ │ AI Agent │
│ Server │ │ Server │ │ Server │
└──────────────┘ └──────────────┘ └──────────────┘ 2. AI Orchestration Framework
- Multi-Agent Architecture: Specialized agents for different tasks (design analysis, code generation, documentation writing)
Technical Stack
Backend Infrastructure
- Database: PostgreSQL with vector extensions for semantic search
- Message Queue: Redis for inter-service communication
Frontend Tools
AI/ML Components
- LLMs: Support for multiple providers (OpenAI, Anthropic, local models)
- Embeddings: Vector database for semantic component search
- Fine-tuning: Custom models for organization-specific patterns
Key Features
1. Automated Design Token Management
typescript
interface TokenWorkflow {
extract: {
source: 'Figma' | 'Code' | 'Documentation';
format: 'Variables' | 'Styles' | 'Components';
};
transform: {
target: 'CSS' | 'Swift' | 'Android' | 'React';
method: 'StyleDictionary' | 'Custom';
};
sync: {
direction: 'Bidirectional' | 'DesignToCode' | 'CodeToDesign';
trigger: 'Realtime' | 'Commit' | 'Manual';
};
} 2. Engineer-Driven Documentation Generation
Engineers can generate documentation through:
Code Comments & Annotations
typescript
/**
* @designToken primary-button
* @category buttons
* @status stable
* @accessibility WCAG AA compliant
*/
export const PrimaryButton = styled.button`
background: var(--color-primary);
// AI automatically generates usage docs from implementation
`; MCP Commands
bash
# Generate component documentation
mcp generate-docs --component PrimaryButton
# Update design system from code changes
mcp sync-tokens --source code --target figma 3. Real-Time Design-Code Synchronization
- Figma Webhooks: Instant updates when designs change
- Git Hooks: Automatic documentation updates on commits
- WebSocket Connections: Live preview during development
4. AI-Powered Component Translation
- Convert Figma components to framework-specific code
- Generate responsive variations automatically
- Create accessibility-compliant implementations
- Suggest design token optimizations
MCP Server Implementation
Server Types
1. Design System Server
Handles design token management and component registry:
typescript
interface DesignSystemServer {
resources: {
'/tokens': TokenResource;
'/components': ComponentResource;
'/themes': ThemeResource;
};
tools: {
'extract-tokens': ExtractTokensTool;
'validate-tokens': ValidateTokensTool;
'generate-theme': GenerateThemeTool;
};
prompts: {
'component-spec': ComponentSpecPrompt;
'token-naming': TokenNamingPrompt;
};
} 2. Documentation Server
typescript
interface DocumentationServer {
tools: {
'generate-docs': GenerateDocsTool;
'update-docs': UpdateDocsTool;
'validate-docs': ValidateDocsTool;
};
resources: {
'/templates': DocTemplateResource;
'/examples': CodeExampleResource;
};
} 3. AI Agent Server
typescript
interface AIAgentServer {
tools: {
'analyze-design': AnalyzeDesignTool;
'generate-code': GenerateCodeTool;
'suggest-improvements': SuggestImprovementsTool;
};
prompts: {
'design-to-code': DesignToCodePrompt;
'code-review': CodeReviewPrompt;
};
} Workflow Examples
1. Component Creation Workflow
graph LR
A[Engineer creates component] --> B[AI analyzes implementation]
B --> C[Generate design tokens]
C --> D[Create documentation]
D --> E[Sync to Figma]
E --> F[Update style guide]
2. Design Update Workflow
graph LR
A[Designer updates Figma] --> B[MCP receives webhook]
B --> C[AI analyzes changes]
C --> D[Generate code updates]
D --> E[Create PR with changes]
E --> F[Engineer reviews|approves]
Security & Governance
Access Control
- Role-based permissions for design system modifications
- Audit trails for all automated changes
- Approval workflows for breaking changes
Data Security
- End-to-end encryption for design assets
- Secure token storage with environment-specific access
- GDPR-compliant data handling
Performance Considerations
Scalability
- CDN distribution for generated assets
Optimization
- Incremental updates to minimize processing
- Batch operations for bulk changes
- Lazy loading for documentation sites
Integration Points
Development Tools
- Git Workflows: Branch-specific design systems
Design Tools
- Sketch Integration: Token import/export
- Adobe XD Support: Component mapping
Documentation Platforms
- Custom Portals: API-driven content
Success Metrics
Quantitative Metrics
- 90% consistency in component implementations
- 75% reduction in documentation maintenance effort
Qualitative Metrics
- Improved designer-developer collaboration
- Higher design system adoption rates
- Better component reusability
Implementation Roadmap
Phase 1: Foundation (Months 1-3)
- Core MCP server architecture
- Basic token extraction and sync
- MVP documentation generation
Phase 2: AI Integration (Months 4-6)
- LangChain integration
- Component translation capabilities
- Automated documentation writing
Phase 3: Advanced Features (Months 7-9)
- Multi-framework support
- Advanced AI suggestions
- Performance optimizations
Phase 4: Enterprise Features (Months 10-12)
- Advanced governance tools
- Analytics and insights
- Custom AI model training
Conclusion
This AI-powered design system generator represents a paradigm shift in how teams approach design system documentation and maintenance. By placing engineers at the center of the documentation process and leveraging AI to bridge the design-code gap, we can create more consistent, maintainable, and scalable design systems.
[obbkg0]
[67aeae]
[rcg3af]
The MCP server architecture provides the flexibility and extensibility needed to integrate with existing tools while the AI orchestration layer ensures intelligent automation that enhances rather than replaces human creativity and decision-making.
[emkvx2]
[b1gp81]
[j9qfej]