Salute: An AI design system generator that generates as you code.

AI-Powered Design System Generator Specification

Executive Summary

This specification outlines the architecture and implementation of an innovative AI-powered design system generator that bridges the gap between design and engineering workflows. The system's primary focus is enabling engineers to generate comprehensive design system documentation as they build, creating a truly unified design-to-code workflow delivered through Model Context Protocol (MCP) servers. [emkvx2] [chi5g7]

Vision & Goals

Primary Objectives

  • Engineer-First Documentation: Enable engineers to generate design system documentation directly from their code implementations [67aeae] [wdm323]
  • Bidirectional Synchronization: Maintain real-time sync between design tools and code repositories [urqh0r] [nd2bbt]
  • AI-Powered Automation: Leverage LLMs to translate between design specifications and implementable components [obbkg0] [2wmeyb]
  • Unified Workflow: Create a seamless bridge between UI design and engineering processes [rcg3af]

Key Differentiators

  • Documentation generation happens during development, not after
  • Engineers become active contributors to design system documentation
  • AI assists in maintaining consistency across design and code [3iskas] [2wmeyb]

Component Display Component Specification

Overview

A reusable component for displaying and documenting UI components in a design system. This component provides a clean, interactive way to showcase components with code examples, variants, and usage guidelines.

Features

1. Component Preview

  • Displays the rendered component in an isolated container
  • Responsive preview area with viewport size controls
  • Toggle between light/dark mode
  • Background color customization
  • Toggle component states/interactions

2. Code Display

  • Syntax-highlighted code examples
  • Toggle between different frameworks (React, Vue, Svelte, etc.)
  • Copy to clipboard functionality
  • Expandable/collapsible code blocks

3. Component Controls

  • Interactive prop controls (sliders, toggles, selects)
  • Live preview updates as props change
  • Preset configurations
  • Reset to defaults option

4. Documentation

  • Component name and description
  • Status badges (New, Deprecated, Experimental)
  • Version information
  • Last updated timestamp
  • Dependencies

Props

PropTypeDefaultDescription
titlestring''The name of the component
descriptionstring''Brief description of the component
componentReact/Vue/Svelte Component-The actual component to display
variantsArray<{name: string, props: object}>[]Different variants of the component
codestring''Example code for the component
status'stable' | 'beta' | 'deprecated''stable'Component status
versionstring'1.0.0'Component version
dependenciesstring[][]List of dependencies

Usage Example

jsx
<ComponentDisplay
  title="Button"
  description="A simple button component with multiple variants and sizes."
  component={Button}
  variants={[
    { name: 'Primary', props: { variant: 'primary', children: 'Click Me' } },
    { name: 'Secondary', props: { variant: 'secondary', children: 'Click Me' } },
  ]}
  code={`<Button variant="primary">Click Me</Button>`}
  status="stable"
  version="1.2.0"
  dependencies={['@your-design-system/core']}
/>

Accessibility

  • Keyboard navigation support
  • Screen reader friendly
  • Proper ARIA attributes
  • Focus management

Responsive Behavior

  • Adapts to different screen sizes
  • Mobile-friendly controls
  • Horizontal scrolling for wide components
  • Toggleable device frames

Theme Support

  • Light/dark mode
  • Custom theming
  • Contrast ratio checking
  • Color blindness simulation

Development Guidelines

  1. Use TypeScript for type safety
  2. Follow WCAG 2.1 AA standards
  3. Document all props and methods
  4. Include unit tests
  5. Add storybook stories
  6. Support SSR/SSG

Future Enhancements

  • Interactive playground
  • Visual regression testing
  • Performance metrics
  • Bundle size analysis
  • Automated screenshot testing

System Architecture

Core Components

1. MCP Server Architecture

The system implements a multi-server MCP architecture [japg2p] [12]:
text
┌─────────────────────────────────────────────────┐
│                  MCP Host                       │
│         (IDE/Development Environment)           │
├─────────────────────────────────────────────────┤
│  MCP Client 1    │  MCP Client 2   │ MCP Client 3│
└──────┬───────────┴──────┬──────────┴─────┬──────┘
       │                  │                 │
       ▼                  ▼                 ▼
┌──────────────┐  ┌──────────────┐  ┌──────────────┐
│Design System │  │Documentation │  │   AI Agent   │
│   Server     │  │    Server    │  │    Server    │
└──────────────┘  └──────────────┘  └──────────────┘

2. AI Orchestration Framework

Built on LangChain/LangGraph for sophisticated agent workflows [fc33aj] [5m26pl] [15]:
  • Multi-Agent Architecture: Specialized agents for different tasks (design analysis, code generation, documentation writing)
  • Context Engineering: Full control over prompts and agent interactions [j9qfej]
  • Human-in-the-Loop: Approval workflows for critical changes [b1gp81]

Technical Stack

Backend Infrastructure

  • Runtime: Node.js/TypeScript for MCP server implementation [4655sr]
  • AI Framework: LangChain/LangGraph for orchestration [fc33aj] [0pdc5h] [b1gp81]
  • API Layer: GraphQL with real-time subscriptions [0m4vgj]
  • Database: PostgreSQL with vector extensions for semantic search
  • Message Queue: Redis for inter-service communication

Frontend Tools

  • Design Integration: Figma API for design token extraction [xjts7a] [afj9nm]
  • Documentation Engine: MDX-based system with live component rendering [u4os0c]
  • Code Generation: Style Dictionary for multi-platform token transformation [afj9nm] [a6fbdo]

AI/ML Components

  • LLMs: Support for multiple providers (OpenAI, Anthropic, local models)
  • Embeddings: Vector database for semantic component search
  • Fine-tuning: Custom models for organization-specific patterns

Key Features

1. Automated Design Token Management

The system automatically extracts and manages design tokens [7qig1h] [25]:
typescript
interface TokenWorkflow {
  extract: {
    source: 'Figma' | 'Code' | 'Documentation';
    format: 'Variables' | 'Styles' | 'Components';
  };
  transform: {
    target: 'CSS' | 'Swift' | 'Android' | 'React';
    method: 'StyleDictionary' | 'Custom';
  };
  sync: {
    direction: 'Bidirectional' | 'DesignToCode' | 'CodeToDesign';
    trigger: 'Realtime' | 'Commit' | 'Manual';
  };
}

2. Engineer-Driven Documentation Generation

Engineers can generate documentation through:

Code Comments & Annotations

typescript
/**
 * @designToken primary-button
 * @category buttons
 * @status stable
 * @accessibility WCAG AA compliant
 */
export const PrimaryButton = styled.button`
  background: var(--color-primary);
  // AI automatically generates usage docs from implementation
`;

MCP Commands

bash
# Generate component documentation
mcp generate-docs --component PrimaryButton

# Update design system from code changes
mcp sync-tokens --source code --target figma

3. Real-Time Design-Code Synchronization

Implements bidirectional sync using [urqh0r] [6]:
  • Figma Webhooks: Instant updates when designs change
  • Git Hooks: Automatic documentation updates on commits
  • WebSocket Connections: Live preview during development

4. AI-Powered Component Translation

The AI agent can [obbkg0] [3jh7m9] [8]:
  • Convert Figma components to framework-specific code
  • Generate responsive variations automatically
  • Create accessibility-compliant implementations
  • Suggest design token optimizations

MCP Server Implementation

Server Types

1. Design System Server

Handles design token management and component registry:
typescript
interface DesignSystemServer {
  resources: {
    '/tokens': TokenResource;
    '/components': ComponentResource;
    '/themes': ThemeResource;
  };
  tools: {
    'extract-tokens': ExtractTokensTool;
    'validate-tokens': ValidateTokensTool;
    'generate-theme': GenerateThemeTool;
  };
  prompts: {
    'component-spec': ComponentSpecPrompt;
    'token-naming': TokenNamingPrompt;
  };
}

2. Documentation Server

Manages documentation generation and updates [67aeae] [27]:
typescript
interface DocumentationServer {
  tools: {
    'generate-docs': GenerateDocsTool;
    'update-docs': UpdateDocsTool;
    'validate-docs': ValidateDocsTool;
  };
  resources: {
    '/templates': DocTemplateResource;
    '/examples': CodeExampleResource;
  };
}

3. AI Agent Server

Orchestrates LLM interactions [5m26pl] [16]:
typescript
interface AIAgentServer {
  tools: {
    'analyze-design': AnalyzeDesignTool;
    'generate-code': GenerateCodeTool;
    'suggest-improvements': SuggestImprovementsTool;
  };
  prompts: {
    'design-to-code': DesignToCodePrompt;
    'code-review': CodeReviewPrompt;
  };
}

Workflow Examples

1. Component Creation Workflow

graph LR A[Engineer creates component] --> B[AI analyzes implementation] B --> C[Generate design tokens] C --> D[Create documentation] D --> E[Sync to Figma] E --> F[Update style guide]

2. Design Update Workflow

graph LR A[Designer updates Figma] --> B[MCP receives webhook] B --> C[AI analyzes changes] C --> D[Generate code updates] D --> E[Create PR with changes] E --> F[Engineer reviews|approves]

Security & Governance

Access Control

  • Role-based permissions for design system modifications
  • Audit trails for all automated changes
  • Approval workflows for breaking changes

Data Security

  • End-to-end encryption for design assets
  • Secure token storage with environment-specific access
  • GDPR-compliant data handling

Performance Considerations

Scalability

  • Microservice architecture for independent scaling [japg2p]
  • Caching layers for frequently accessed tokens [0m4vgj]
  • CDN distribution for generated assets

Optimization

  • Incremental updates to minimize processing
  • Batch operations for bulk changes
  • Lazy loading for documentation sites

Integration Points

Development Tools

  • VS Code Extension: Direct IDE integration [emkvx2] [rcg3af]
  • CI/CD Pipelines: Automated validation and deployment [5ap3yg]
  • Git Workflows: Branch-specific design systems

Design Tools

  • Figma Plugin: Two-way sync capabilities [xjts7a] [rcg3af]
  • Sketch Integration: Token import/export
  • Adobe XD Support: Component mapping

Documentation Platforms

  • Storybook Integration: Auto-generated stories [u4os0c]
  • ZeroHeight Sync: Documentation updates [u4os0c]
  • Custom Portals: API-driven content

Success Metrics

Quantitative Metrics

  • 50% reduction in design-to-code time [urqh0r]
  • 90% consistency in component implementations
  • 75% reduction in documentation maintenance effort

Qualitative Metrics

  • Improved designer-developer collaboration
  • Higher design system adoption rates
  • Better component reusability

Implementation Roadmap

Phase 1: Foundation (Months 1-3)

  • Core MCP server architecture
  • Basic token extraction and sync
  • MVP documentation generation

Phase 2: AI Integration (Months 4-6)

  • LangChain integration
  • Component translation capabilities
  • Automated documentation writing

Phase 3: Advanced Features (Months 7-9)

  • Multi-framework support
  • Advanced AI suggestions
  • Performance optimizations

Phase 4: Enterprise Features (Months 10-12)

  • Advanced governance tools
  • Analytics and insights
  • Custom AI model training

Conclusion

This AI-powered design system generator represents a paradigm shift in how teams approach design system documentation and maintenance. By placing engineers at the center of the documentation process and leveraging AI to bridge the design-code gap, we can create more consistent, maintainable, and scalable design systems. [obbkg0] [67aeae] [rcg3af]
The MCP server architecture provides the flexibility and extensibility needed to integrate with existing tools while the AI orchestration layer ensures intelligent automation that enhances rather than replaces human creativity and decision-making. [emkvx2] [b1gp81] [j9qfej]

Sources

[xjts7a]

Living Documentation of Design Tokens with Tokens Studio and ...

[afj9nm]

Automate Figma tokens to code - YouTube

[3jh7m9]

AI Generates Design Systems in Seconds...? - YouTube

[qdue0x]

Define your design system's documentation - Lesson 2 part 3